
© Prof. Dr.-Ing. Wolfgang Lehner |

SOFORT: A Hybrid SCM-DRAM Storage Engine
for Fast Data Recovery

Ismail Oukid*°, Daniel Booss°, Wolfgang Lehner*, Peter Bumbulis°,
and Thomas Willhalm+

*Dresden University of Technology

°SAP AG
+ Intel GmbH

DaMoN 2014, Snowbird, Utah, USA, June 23, 2014

Diese Zeile ersetzt man über: Einfügen > Kopf- und
Fußzeile NICHT im Master

© Ismail Oukid | | 2

What is Storage Class Memory?

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Storage Class
Memory

Non-Volatile
Memory

Byte-
addressable
(load/store
semantics)

Latency close
to DRAM‘s,
with writes
slower than

reads

Denser than
DRAM

(i.e. better
scaling)

More energy
efficient than

DRAM

e.g. PCM,
STTRAM, MRAM
and Memristors

© Ismail Oukid | | 3

SCM Compared to Other Technologies

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Latency

Bandwidth

© Ismail Oukid | | 4

SCM Compared to Other Technologies

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Latency

Bandwidth

HDD

© Ismail Oukid | | 5

SCM Compared to Other Technologies

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Latency

Bandwidth

HDD

DRAM

© Ismail Oukid | | 6

SCM Compared to Other Technologies

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Latency

Bandwidth

HDD

DRAM

Bridging the gap
between memory

and storage

© Ismail Oukid | | 7

SCM Compared to Other Technologies

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Latency

Bandwidth

HDD

DRAM

SSD

Bridging the gap
between memory

and storage

© Ismail Oukid | | 8

SCM Compared to Other Technologies

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Latency

Bandwidth

HDD

DRAM

SSD

SCM

Bridging the gap
between memory

and storage

© Ismail Oukid | | 9

SCM Compared to Other Technologies

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Latency

Bandwidth

Storage Class Memory is a merging point between
memory and storage

HDD

DRAM

SSD

SCM

Bridging the gap
between memory

and storage

© Ismail Oukid | | 10

Main Memory DB Restart Time

• Availability guarantees are an important part of many SLAs

• Availability of 99%  downtime of 3.65 days/year!

• Many database crash conditions are transient

• A reasonable approach to recovery: restarting the database

• Database restart time impacts directly database availability

• Long restart times: a shortcoming of main memory databases

 Improve database restart time using SCM

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

© Ismail Oukid | | 11

Overview of SOFORT (1)

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

SOFORT: A hybrid SCM-DRAM storage engine for fast data recovery

Architecture:
• Single-level column-store
• Dictionary encoded
• Multi version concurrency control (MVCC)
• No transactional log

Requirements:
• Fast data recovery
• Mixed OLTP and OLAP
• A hybrid SCM-DRAM memory environment

© Ismail Oukid | | 12

Overview of SOFORT (2)

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

SOFORT

MVCC
Array

Table

Column

Dict. Index Dict. Index
(optional)

Tables

Value
IDs

Columns

CTS DTS
MVCC Entry

Persisted on SCM

Volatile in DRAM

TX
Array

Dictionary
Encoded

Append-
only

On DRAM to
enable better
performance

© Ismail Oukid | | 13

Persisting Data on the Fly

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

SCM accessed via the CPU cache: Writes not guaranteed to have
reached SCM  Need to flush data from cache

Code reordered at compilation time & Complex CPU out-of-order
execution  Need to order memory operations

Persistence primitives: flushing instructions (CLFLUSH), memory
barriers (MFENCE, SFENCE, LFENCE) and non-temporal stores (…)

Data may still be held in memory controller buffers
  Need to flush memory controller buffers on power failures

© Ismail Oukid | | 14

Persisting Data on the Fly: Example

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Int var = 0;

Bool persisted = false;

…

var = 1;

Flush var;

persisted = true;

Flush persisted;

…

© Ismail Oukid | | 15

Persisting Data on the Fly: Example

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Cache SCM

var 0 0

persisted False False

Int var = 0;

Bool persisted = false;

…

var = 1;

Flush var;

persisted = true;

Flush persisted;

…

© Ismail Oukid | | 16

Persisting Data on the Fly: Example

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Int var = 0;

Bool persisted = false;

…

var = 1;

Flush var;

persisted = true;

Flush persisted;

…

Cache SCM

var 0 0

persisted True True

© Ismail Oukid | | 17

Persisting Data on the Fly: Example

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Int var = 0;

Bool persisted = false;

…

var = 1;

Flush var;

persisted = true;

Flush persisted;

…

Cache SCM

var 1 0

persisted True True

© Ismail Oukid | | 18

Persisting Data on the Fly: Example

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Int var = 0;

Bool persisted = false;

…

var = 1;

Flush var;

MFENCE;

persisted = true;

Flush persisted;

…

Cache SCM

var 0 0

persisted False False

© Ismail Oukid | | 19

Persisting Data on the Fly: Example

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Int var = 0;

Bool persisted = false;

…

var = 1;

Flush var;

MFENCE;

persisted = true;

Flush persisted;

…

Cache SCM

var 0 0

persisted False False

© Ismail Oukid | | 20

Persisting Data on the Fly: Example

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Int var = 0;

Bool persisted = false;

…

var = 1;

MFENCE;

Flush var;

MFENCE;

persisted = true;

Flush persisted;

…

Cache SCM

var 0 0

persisted False False

© Ismail Oukid | | 21

Persisting Data on the Fly: Example

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Int var = 0;

Bool persisted = false;

…

var = 1;

MFENCE;

Flush var;

MFENCE;

persisted = true;

MFENCE;

Flush persisted;

MFENCE;

…

Cache SCM

var 0 0

persisted False False

© Ismail Oukid | | 22

Persistent Memory Allocator

Persistent Memory File System (PMFS):

• SCM-aware file system

• No buffering in DRAM on mmap  direct access to SCM

PMAllocator:

• Huge PMFS files as memory pages

• Pages cut into segments for allocation

• Persistent counter of memory pages

• Mapping from persistent memory to VM

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

…

PMFS file = Memory page

File name = Unique page ID

Segment

© Ismail Oukid | | 23

Persistent Memory Pointers

 We propose Persistent Memory Pointers (PMPtrs):

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

Struct PMPtr {
 int64_t m_BaseID;
 ptrdiff_t m_Offset;
}

Persistent memory page ID

Offset indicating the start
of the allocated block

Regular pointers are bound to the program‘s address space
 Cannot be used for recovery

• Can be converted (swizzled) to regular pointers
• PMPtrs stay valid across failures

© Ismail Oukid | | 24

Recovery Mechanism

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

PM Entry
Point

Reload
PMAllocator

Reload
SOFORT

Reload
Table 1

Reload
Table M

Reload
column 1

Reload
column N

…

…

• A PMPtr to the PMAllocator
• A PMPtr to the storage engine

• Reload memory pages
• Reconstruct mapping to VM

• Rollback unfinished transactions
• Allocate ressources for recovery

• Data structures sanity check
• Initiate columns recovery

• Data structures sanity check
• Reconstruct dictionary indexes

© Ismail Oukid | | 25

Evaluation: Setup

Hardware-based SCM simulation:

• Intel Xeon E5 @2.60Ghz, 20MB L3 cache, 8 physical cores/socket

• Avoiding NUMA effects: benchmark run on a single socket

• Limitation: symmetric instead of asymmetric read/write latency

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

SCM
(PMFS mount)

DRAM DRAM

Socket 0 Socket 1

CPU (8 cores) CPU (8 cores)

QPI Link

Memory Bus Memory Bus

© Ismail Oukid | | 26

Evaluation: Setup

TATP benchmark:

• Simple but realistic OLTP benchmark (20% write, 80% reads)

• Simulates a telecommunication application

• Initial population of 1 million subscribers (~2GB data size)

Shore-MT:

• A storage manager designed for scalability in multicores

• Run on Ramdisk (tempFS)

Restart time:

• Single, 4 column table

• SCM latency set to 200ns

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

© Ismail Oukid | | 27

Evaluation: Throughput

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
io

. T
x/

s

users

GetSubData Throughput (Read Only)

shore-read-shm

sofort-read-shm

sofort-read-200ns

sofort-read-300ns

sofort-read-700ns

Worst
case

Upper
bound

Realistic
case

User contention.
Solved with PLP.

© Ismail Oukid | | 28

Evaluation: Throughput

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
io

. T
x/

s

users

TATP Throughput (80% Read, 20% Write)

shore-shm

sofort-shm

sofort-200ns

sofort-300ns

sofort-700ns

SOFORT outperforms Shore-MT even in a high latency
SCM environment

Realistic
case

Upper
bound

Worst
case

~900K Tx/s

~250K Tx/s

~550K Tx/s

© Ismail Oukid | | 29

Evaluation: Restart Time

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23 SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

0

1

2

3

4

5

2 4 6 8 10

R
e

st
ar

t
Ti

m
e

 (
s)

Mio. Distinct Values

Data Size Fixed

time-dbfixed-
skiplist

time-dbfixed-
hashmap0

2

4

6

8

10

50 100 150 200 250

R
e

st
ar

t
Ti

m
e

 (
s)

Mio. Rows/Table

Dict. Size Fixed

time-dictfixed-
skiplist

time-dictfixed-
hashmap

Restart time is independent of instance size and depends
only on dictionaries size

0

2

4

6

0 5 10 15 20 25 30 35 40 45 50

M
io

 T
x/

s

Time (s)

SOFORT on SCM

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45 50

M
io

 T
x/

s

Time (s)

SOFORT on DISK

~2sec
~18sec

Restart time is
independent
of data size

Volatile
structures drive

restart time

No persistence
guarantees

SOFORT
recovers nearly

instantly

© Ismail Oukid | | 30

Conclusion and Future Work

We showed that SCM can help getting rid of the transactional log
and significantly improving database restart times

Latency study based on hardware simulation showed that SOFORT
exhibits competitive performance even in a high latency SCM
environment

Future Work:

• Extend SOFORT to support long transactions
• Explore new recovery schemes
• Design persistent index structures
• Experiment with write-through caching policy

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery DaMoN‘14, June 23

© Prof. Dr.-Ing. Wolfgang Lehner |

SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery

Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas Willhalm+

DaMoN 2014, Snowbird, Utah, USA, June 23, 2014

Diese Zeile ersetzt man über: Einfügen > Kopf- und
Fußzeile NICHT im Master

Thank You! Questions? Comments?

Ismail Oukid

Takeaway: SCM is a game changer in the database industry
Make the change happen!

