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What is Storage Class Memory? 
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Storage Class 
Memory 

Non-Volatile 
Memory 

Byte-
addressable 
(load/store 
semantics) 

Latency close 
to DRAM‘s, 
with writes 
slower than 

reads 

Denser than 
DRAM      

(i.e. better 
scaling) 

More energy 
efficient than 

DRAM 

e.g. PCM, 
STTRAM, MRAM 
and Memristors 
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SCM Compared to Other Technologies 
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SCM Compared to Other Technologies 
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Latency 

Bandwidth 

Storage Class Memory is a merging point between 
memory and storage 
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Main Memory DB Restart Time 

 

• Availability guarantees are an important part of many SLAs 

• Availability of 99%   downtime of 3.65 days/year! 

 

• Many database crash conditions are transient 

• A reasonable approach to recovery: restarting the database 

• Database restart time impacts directly database availability 

• Long restart times: a shortcoming of main memory databases 

 

       Improve database restart time using SCM 
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Overview of SOFORT (1) 
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SOFORT: A hybrid SCM-DRAM storage engine for fast data recovery 

Architecture: 
• Single-level column-store 
• Dictionary encoded 
• Multi version concurrency control (MVCC) 
• No transactional log 

Requirements: 
• Fast data recovery 
• Mixed OLTP and OLAP 
• A hybrid SCM-DRAM memory environment 
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Overview of SOFORT (2) 
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SOFORT 

MVCC 
Array 

Table 

Column 

Dict. Index Dict. Index 
(optional) 

Tables 

Value 
IDs 

Columns 

CTS DTS 
MVCC Entry 

Persisted on SCM 

Volatile in DRAM 

TX  
Array 

Dictionary 
Encoded 

Append-
only 

On DRAM to 
enable better 
performance 
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Persisting Data on the Fly 
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SCM accessed via the CPU cache: Writes not guaranteed to have 
reached SCM  Need to flush data from cache 

Code reordered at compilation time & Complex CPU out-of-order 
execution  Need to order memory operations 

Persistence primitives: flushing instructions (CLFLUSH), memory 
barriers (MFENCE, SFENCE, LFENCE) and non-temporal stores (…) 

Data may still be held in memory controller buffers 
  Need to flush memory controller buffers on power failures 
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Persisting Data on the Fly: Example 
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Int var = 0; 

Bool persisted = false; 

 

… 

var = 1; 

         

Flush var; 

         

persisted = true; 

         

Flush persisted; 

         

… 
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Persisting Data on the Fly: Example 
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Cache SCM 

var 0 0 

persisted False False 

Int var = 0; 

Bool persisted = false; 

 

… 

var = 1; 

         

Flush var; 

         

persisted = true; 

         

Flush persisted; 

         

… 
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Persisting Data on the Fly: Example 
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Int var = 0; 

Bool persisted = false; 

 

… 

var = 1; 

         

Flush var; 

         

persisted = true; 

         

Flush persisted; 

         

… 

Cache SCM 

var 1 0 

persisted True True 
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Persisting Data on the Fly: Example 
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Int var = 0; 

Bool persisted = false; 

 

… 

var = 1; 

         

Flush var; 

MFENCE; 

persisted = true; 

         

Flush persisted; 

         

… 

Cache SCM 

var 0 0 

persisted False False  
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Int var = 0; 

Bool persisted = false; 

 

… 

var = 1; 

MFENCE; 

Flush var; 

MFENCE; 

persisted = true; 

MFENCE; 

Flush persisted; 
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… 

Cache SCM 
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Persistent Memory Allocator 

Persistent Memory File System (PMFS): 

• SCM-aware file system 

• No buffering in DRAM on mmap  direct access to SCM  

 

PMAllocator: 

• Huge PMFS files as memory pages  

• Pages cut into segments for allocation 

• Persistent counter of memory pages 

• Mapping from persistent memory to VM 
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… 

PMFS file = Memory page 

File name = Unique page ID 

Segment 
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Persistent Memory Pointers 

 

 

 

   We propose Persistent Memory Pointers (PMPtrs): 
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Struct PMPtr { 
 int64_t  m_BaseID; 
 ptrdiff_t  m_Offset; 
} 

Persistent memory page ID 

Offset indicating the start  
of the allocated block 

Regular pointers are bound to the program‘s address space      
 Cannot be used for recovery 

• Can be converted (swizzled) to regular pointers  
• PMPtrs stay valid across failures 
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Recovery Mechanism 
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PM Entry 
Point 

Reload 
PMAllocator 

Reload 
SOFORT 

Reload 
Table 1 

Reload 
Table M 

Reload 
column 1 

Reload 
column N 

… 

… 

• A PMPtr to the PMAllocator 
• A PMPtr to the storage engine 

• Reload memory pages 
• Reconstruct mapping to VM 

• Rollback unfinished transactions 
• Allocate ressources for recovery 

• Data structures sanity check 
• Initiate columns recovery 

• Data structures sanity check 
• Reconstruct dictionary indexes 
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Evaluation: Setup 

Hardware-based SCM simulation: 

• Intel Xeon E5 @2.60Ghz, 20MB L3 cache, 8 physical cores/socket  

• Avoiding NUMA effects: benchmark run on a single socket 

• Limitation: symmetric instead of asymmetric read/write latency 
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SCM 
(PMFS mount) 

DRAM DRAM 

Socket 0 Socket 1 

CPU (8 cores) CPU (8 cores) 

QPI Link 

Memory Bus Memory Bus 
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Evaluation: Setup 

TATP benchmark:  

• Simple but realistic OLTP benchmark (20% write, 80% reads) 

• Simulates a telecommunication application 

• Initial population of 1 million subscribers (~2GB data size) 
 

Shore-MT: 

• A storage manager designed for scalability in multicores 

• Run on Ramdisk (tempFS)  
 

Restart time: 

• Single, 4 column table  

• SCM latency set to 200ns 
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Evaluation: Throughput 
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Evaluation: Throughput 
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Evaluation: Restart Time 
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Conclusion and Future Work 

We showed that SCM can help getting rid of the transactional log 
and significantly improving database restart times 

 

Latency study based on hardware simulation showed that SOFORT 
exhibits competitive performance even in a high latency SCM 
environment 

 

Future Work: 

• Extend SOFORT to support long transactions 
• Explore new recovery schemes 
• Design persistent index structures 
• Experiment with write-through caching policy 
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Thank You! Questions? Comments? 

Ismail Oukid 

Takeaway: SCM is a game changer in the database industry 
Make the change happen! 


