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ABSTRACT
This short paper highlights published work on the MCDB database
system as well as its successor, SimSQL. These database systems
are designed from the ground up to support stochastic analytics; that
is, data analysis performed with the aid of stochastic simulations.

1. INTRODUCTION
Dealing with data uncertainty has always been a challenge, and

never more so than in the presence of the “four V’s” of Big Data:
volume, variety, veracity, and velocity. Data uncertainty comes
from many sources: measurement errors, because data have not
yet been observed and must be forecast (think of sales figures for
the upcoming quarter), or because they are missing and must be
imputed. The first step in addressing this uncertainty is to quantify
it by means of a statistical model; the model can then be queried
to answer questions of interest. Importantly, the answer to a query
over uncertain data—e.g., “What would my profits have been last
year had I raised my prices by 10%?” or “how many days until all
orders placed today are delivered?”—has the form of a probability
distribution over possible answers; inferring characteristics of this
distribution (moments, quantiles, histogram approximations, and
so on) is the primary goal. In the real world, there are as many
statistical models as there are types of uncertainty. Thus the key
challenge in dealing with big, uncertain data is building systems
that can deal with a broad spectrum of models and can query these
models when the amount of data is massive.

This paper highlights a seven-year joint effort between research-
ers at Rice University and IBM Research focused on developing
precisely these types of systems. The philosophy is to use Monte
Carlo techniques that can handle uncertainty in great generality
and to exploit parallel processing technologies to handle massive
datasets. The Monte Carlo technology is built into the fabric of the
system, so that stochastic analysis occurs in the database, close to
the data, avoiding the need to extract the data and process it in some
external analytics tool. Our current system, SimSQL, is available at
http://cmj4.web.rice.edu/SimSQL/SimSQL.html.

2. MCDB

2.1 Overview
Historically, the first system to be created was the Monte Carlo

Database System (MCDB), which handles many types of uncertain
data, primarily within a traditional parallel-database framework [9,
10, 11], although the promise of MapReduce for Monte Carlo pro-
cessing was recognized fairly early on [14]. MCDB allows an
analyst to attach arbitrary stochastic models to a database, thereby
specifying, in addition to the ordinary relations in the database, “ran-

dom” relations that contain uncertain data. These stochastic models
are implemented as user- and system-defined libraries of external
C++ programs called Variable Generation functions, or VG func-
tions for short. A call to a VG function generates a pseudorandom
sample from a probability distribution; VG functions are usually pa-
rameterized on the current state of the non-random relations (tables
of historical sales data in our example). Generating a sample of each
uncertain data value creates a database instance, i.e., a realization
of an ordinary database.

2.2 Example
For an example of how a VG function can be used to create

a random relation, imagine that we have a database of hospital
patients:

patients(name, gender)

We wish to simulate a systolic blood pressure for each patient. To
do this, imagine that we have a parameter table that tells us, for each
possible gender, the average systolic blood pressure, as well as the
standard deviation:

sbp(mean, std, gender)

We can then create a random relation having a simulated blood
pressure for each patient as follows:

create table sbp_data(name, gender, sbp) as
for each p in patients
with res as Normal (
select s.mean, s.std
from sbp s where s.gender = p.gender)

select p.name, p.gender, r.value
from res r

Briefly, what this code does is to consider every tuple p in the
patients table. For each patient p, the sbp table is queried to
find the mean and standard deviation associated with the patient’s
gender. The resulting tuple is then used to parameterize the Normal
VG function, which returns a random tuple having one normally
distributed attribute, value. The final select statement then
composes that random tuple with the patient’s name and gender
to produce an output tuple. The tuples produced by all of the execu-
tions of the select statement (one for each patient) are unioned
together to create the sbp_data relation.

This example is quite simple. In general, a VG function can be
parameterized by taking multiple relations as input, where each
input relation is computed by means of a subquery involving one or
more of the non-random relations. Furthermore, each VG function
can output an arbitrary number of correlated tuples, and a random
create table statement can have multiple VG function invoca-
tions. The VG function presented in the example simply generates
a sample from a standard distribution. More generally, samples
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can be generated from arbitrarily complex stochastic models, so
that underlying probability distribution need not have a closed-form
representation. For example, a VG function might produce a random
sample corresponding to the future value of a stock by internally
running a stochastic financial simulation.

2.3 Queries Over Random Relations
Users of MCDB can design SQL queries that reference both

random and non-random database relations. In the example of
Section 2.2, one simple query of interest might be

select average(sbp) from sbp_data

Because sbp_data is a random relation, the “query result” is
actually a probability distribution over possible query results, i.e.,
over possible values of the average systolic blood pressure. Our goal
is to estimate features of interest for this probability distribution,
such as moments, quantiles, and so on. Executing such a query in
MCDB is equivalent to first generating a random database instance
and then running the query over the instance. This generates a
sample from the query-result distribution. Iterating this process
N times generates N samples from this distribution, which can
then be used to estimate specified distribution features such as the
expected value or variance of the average blood pressure. We can
even compute a histogram approximation of the entire query-result
distribution. Replacing average by max in the the above query,
we can estimate, e.g., the variance of the highest simulated systolic
blood pressure in the database.

To ensure acceptable practical performance, MCDB employs new
query processing algorithms that execute a query plan only once,
processing “tuple bundles” rather than ordinary tuples. A tuple
bundle encapsulates the instantiations of a tuple over a set of Monte
Carlo iterations. Subsequent work [1, 11] has demonstrated how
MCDB can be extended to deal with risk analysis (by efficiently
estimating extreme quantiles) and to handle threshold queries, e.g.,
“Which regions will see more than a 2% decline in sales with at least
50% probability?”.

3. SIMSQL

3.1 Overview
SimSQL [5] is a re-implementation and extension of MCDB.

Unlike MCDB, SimSQL allows random database relations to be
used when parameterizing VG functions. This allows SimSQL to
implement hierarchical stochastic models such as latent Dirichlet
allocation (LDA) [3] for learning topics from text.

Moreover, SimSQL allows both versioning and recursive defini-
tions of random relations. For example, data in random relation
A can be used to parametrize the stochastic generation of relation
B, which in turn can be used to parametrize the stochastic gen-
eration of a second version of relation A, and so on. Whereas
MCDB merely allowed generation of sample realizations of a given
stochastic database D—i.e., realizations of a static database-valued
random variable—the foregoing extensions enable SimSQL to gen-
erate realizations of a database-valued Markov chain D[0], D[1],
D[2], . . .. That is, the stochastic mechanism that generates a real-
ization of the ith database state D[i] may explicitly depend on the
prior state D[i− 1].

3.2 Example
For an example of how SimSQL can be used to simulate a Markov

chain, imagine that we have a directed graph, stored in the following
relation:

edge(vert_from, vert_to)

We also have a number of people:

person(name)

We want to simulate a Markov chain that initially associates each
person with a random vertex in the graph, and then has all of those
people perform a random walk on the graph.

To code this stochastic model in SimSQL, we first define the
random relation that holds everyone’s initial position:

create table pos[0] (name, vert) as
for each p in person
with res as Categorical (
select distinct vert_from, 1.0
from edge)

select p.name, r.value
from res r

Here, the Categorical VG function chooses an item randomly
from a set, with the probability of choosing an item proportional to
a given weight. (Each vertex has weight 1.0 in our example.)

We then move those people around as follows:

create table pos[i] (name, vert) as
for each p1 in person
with res as categorical (
select e.vert_to, 1.0
from edge as e, pos[i-1] as p2
where p2.name = p1.name and
p2.vert = e.vert_from)

select p.name, r.value
from res r

This definition is similar to that of pos[0], except that the next
location for each person is chosen randomly from the set of locations
reachable from the person’s current location, where the current
location is stored in pos[i-1].

Similarly to MCDB, it is possible to pose queries over this sort of
Markov chain. For example, we can ask “How many people are at
each vertex at the 50th time tick of the chain?”:

select count(*), vert
from pos[50]
group by vert

As with MCDB, SimSQL first generates a realization of the chain by
generating pos[0],pos[1], . . . ,pos[50] and then executes
the count(*) query over this realization to produce a sample
from the query-result distribution. This process is repeated N times
and the N sample query results are used to estimate features of the
distribution such as the expected number of people at each node at
the 50th time tick.

As indicated by the above example, one potential application of
SimSQL is to massive stochastic agent-based simulations. Indeed,
Wang et al. [13] have shown that deterministic agent-based simu-
lations can be viewed as a sequence of self joins for a relation in
which each tuple contains the data for an agent. SimSQL allows this
idea to be directly extended to a stochastic setting.

3.3 Application to Machine Learning
In this section, we focus on another key application of SimSQL:

Bayesian Machine Learning (ML); see, e.g., [2].

Statistical ML In statistical ML, we first postulate a generative
statistical model for a data set X , which implies a probability distri-
bution function f(X|θ). Here θ represents the unseen model param-
eters and hidden variables; the elements of θ might correspond, for
example, to the probabilities of different topics in a document or to
the likelihood that a source of credit card transactions is fraudulent.
Learning is the process of computing an estimate θ̂ of θ, based on
the data X . In the Bayesian approach to learning, θ is viewed as



a random variable, and the user expresses his or her prior belief
about θ by supplying a prior distribution f(θ). The goal of learning
is to estimate features of f(θ|X), the posterior distribution of θ,
given the data. Typical features of interest are the mode, i.e., the
most likely value, and the mean. The posterior relates to the prior
via Bayes’ Rule: f(θ|X) ∝ f(θ)f(X|θ), where f(X|θ) is the
likelihood of the data, given θ. For industrial strength ML models,
the posterior is high-dimensional and complex, and it is usually
impossible to compute the posterior mode or mean analytically. A
popular solution to this problem is to take samples from the posterior
distribution and use these samples to estimate the feature of interest.
For example, the average of the samples can be used as an estimate
of the posterior mean. The most common sampling technique is
Gibbs sampling.

Gibbs Sampling Basics Gibbs sampling [6] is a standard tech-
nique for generating samples from a high-dimensional probability
distribution function f(Y ) that is known only up to a normalizing
constant. In our setting, Y = θ and f is the posterior distribution of
a complex Bayesian ML model. Gibbs sampling requires the sim-
ulation of a Markov chain, and so it is natural to code and execute
Gibbs samplers using SimSQL.

A Gibbs sampler simulates a Markov chain whose stationary
distribution is the desired target distribution. Briefly, the proce-
dure works as follows. Assume that Y = (Y1, Y2, ..., Yd) is a
d−dimensional vector of random variables. A key requirement of
the Gibbs sampler is that, as is often the case, we can efficiently
generate samples from the conditional distributions f(Yj |Y−j) for
j ∈ {1..d}, where Y−j is the vector comprising all variables except
Yj . To generate k samples the Gibbs sampler proceeds as follows:

1. Select an initial value Y (0) = (Y
(0)
1 , Y

(0)
2 , . . . , Y

(0)
d ).

2. For i = 1, 2, . . . , k, sample Y (i)
j (j = 1, 2, . . . , d) from

f(Y
(i)
j |Y

(i)
1 , . . . , Y

(i)
j−1, Y

(i−1)
j+1 , . . . , Y

(i−1)
d ).

After running the simulation for k steps of a “burn in” period, the
current state of the chain can be taken as a sample from the target
distribution.

Learning a GMM Using SimSQL For an example of how one
can use SimSQL to execute a Gibbs sampler, consider the prob-
lem of learning a Bayesian Gaussian Mixture Model (GMM). A
GMM views a data set as being produced by a set of K Gaussian
(multi-dimensional normal) distributions; the kth Gaussian is pa-
rameterized by a mean vector µk and a covariance matrix Σk, and
has an associated probability πk. To produce xj , the jth point in the
data set, the model first selects a Gaussian by generating a sampled
vector cj from a Multinomial(π, 1) distribution—cj,k equals 1 if
and only if the kth Gaussian is selected and equals 0 otherwise. The
data point xj itself is then sampled from the Gaussian indicated by
cj . We put a Dirichlet(α) prior on π, a Normal(µ0,Λ

−1
0 ) prior on

each µk, and an InvWishart(v,Ψ) prior on each Σk. The learning
goal is then to estimate all of the unseen cj values, as well as all of
the Gaussian parameters.

Denote by p(i)
j the unit-length vector whose kth entry is propor-

tional to π(i)
k ×Normal

(
xj |µ(i)

k ,Σ
(i)
k

)
and by n the number of data

points. A Markov chain to learn the desired posterior distribution
can be derived as

µ
(i)
k ∼ Normal

((
Λ0µ0 + n

(
Σ

(i−1)
k

)−1
)−1

×(
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(
Σ

(i−1)
k

)−1
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j

c
(i−1)
j,k xj

)
,

(
Λ0µ0 + n

(
Σ
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k

)−1
)−1

)

Σ
(i)
k ∼ InvWish

(
n+ v,Ψ +

∑
j

c
(i−1)
j,k (xj − µ(i)

k )(xj − µ(i)
k )T

)
π
(i)
k ∼ Dirichlet

(
α+

∑
j

c
(i−1)
j

)
c
(i)
j ∼ Multinom

(
p(i)
j , 1

)
The task is to write a distributed code that simulates this chain.

The simulation can be implemented in SimSQL using a database
schema with four random relations that correspond to the four
classes of variables listed above:

clus_means[i](clus_id,dim_id, dim_value)
clus_covas[i](clus_id, dim_id1, dim_id2,dim_value)
clus_prob[i](clus_id, prob)
membership[i](data_id, clus_id)

The data to be processed are stored in a relation:
data(data_id, dim_id, data_val)

as are the various entries in the α vector (the “hyperparameter” for
the Dirichlet prior on π):
cluster(dim_id, alpha)

Aside from this, the entire SimSQL code consists of (1) initialization
codes for the first three random relations, (2) recursive definitions
for all four random relations, and (3) a C++ implementation of
the multinomial_membership VG function, which is used to
update membership[i] (the other VG functions are all library
functions). As an example, consider the following initialization:
create table clus_prob[0] (clus_id, prob) as
with diri_res as Dirichlet
(select clus_id, pi_prior
from cluster)

select diri_res.out_id, diri_res.prob
from diri_res;

This code uses the hyperparameters stored in the cluster table
to parameterize the Dirichlet VG function, which then outputs the
value of π(0) as a set of (k, π

(0)
k ) pairs, that are then stored in the

clus_prob[0] table.
Here is an example of a recursive definition:

create table clus_prob[i](clus_id, prob) as
with diri_res as Dirichlet
(select cmem.clus_id,

cmem.count_num+clus.pi_prior as diri_para
from (select cm.clus_id as clus_id,

count(cm.data_id) as count_num
from membership[i-1] as cm
group by clus_id) as cmem, clus

where cmem.clus_id = clus.clus_id)
select diri_res.out_id, diri_res.prob
from diri_res;

This code parameterizes the Dirichlet distribution by performing
the required α+

∑
j c

(i−1)
j computation, in order to re-sample the

selection probability for each of the clusters. This computation
requires that we compute the number of times that each data point
is assigned to each cluster, which is done via SQL aggregation.

3.4 SimSQL Implementation
SimSQL is a fully functional system, written mostly in Java.

SQL codes are compiled by the system into a series of Hadoop
MapReduce jobs. SimSQL supports most of the declarative part of
SQL, including deeply nested, correlated subqueries. The SimSQL
compilation process includes a full, cost-based logical optimization



(SimSQL’s rule-based optimizer is written in Prolog) as well as
physical optimization. The physical optimization procedure utilizes
information such as table sizes, “interesting” sort orders, functional
dependencies, and primary and foreign keys when choosing physical
implementations of the relational operations. For example, SimSQL
has five different distributed join implementations that it can choose
from: a nested-loops join, a full sort-merge join, sort-one-side-
only join, a merge-only join, and a pipelined, non-blocking join
when one relation can fit into memory. SimSQL has been used
on multi-terabyte-sized data sets distributed over 100 machines,
and experiments in [4] indicate that the performance of SimSQL is
competitive with, and in some cases superior to, other platforms for
very large scale machine learning.

4. FUTURE WORK
SimSQL is an active research project, and work is ongoing. One

important direction for future work is to explore the link between
SimSQL and the general area of probabilistic programming [8], in
which an end user specifies a generative stochastic model, e.g., a
GMM, in a high-level programming language such as Church [7].
The code mixes standard programming language constructs (condi-
tionals, loops, and so on) with statistical routines such as function
calls that generate random values from a given distribution. The
system then analyzes the code and automatically generates an exe-
cutable inference algorithm—such as a Gibbs sampler—that infers
the value of the unseen model parameters from observed data. The
attraction of probabilistic programming is that it removes the need
for a PhD-level computer scientist or statistician to derive and im-
plement an inference algorithm; the derivation and implementation
of the algorithm is done automatically, by a compiler.

Because SimSQL uses database techniques to take as input a very
high-level, SQL-based specification of an inference algorithm, it
makes a lot of sense to use SimSQL as a back end for a probabilistic
programming framework. Like all database systems, SimSQL’s
SQL is declarative and “algorithms free”, making it very attractive
as a target for automatic code generation. In theory, software that
automatically generates an SQL-based Markov Chain specification
need not be concerned with efficiency, since the SimSQL optimizer
and runtime will figure out how best to implement the chain.

Along these lines, we are currently working on a declarative,
BUGS-like language [12] called MCL for specifying Markov chains,
as well as a compiler that can translate such a specification into Sim-
SQL’s SQL dialect. This means that a user of SimSQL need not
know SQL—the user need only understand a very simple, math-like
language in order to code a Markov chain simulation. The next step
will be to develop a compiler that can take as input a generative
stochastic model, coded in MCL, and then automatically generate a
Markov Chain specification (also in MCL) that can perform infer-
ence for the original stochastic model. This MCL specification can
then be compiled, optimized, and executed over a very large data set
by SimSQL. At this point, SimSQL will be a complete probabilistic
programming platform for massive data.

We are also working on a number of systems-oriented problems in
the context of SimSQL. For example, we are adding native support
for vectors and matrices to the SimSQL engine. Currently SimSQL
must, for example, represent a d× d matrix as d2 different tuples,
each a (row, col, value) triple. Encoding one million 100×
100 matrices in this way results in 10 billion tuples, and moving all
of these tuples around can be quite expensive. With native support
for vector and matrix column types, SimSQL could store those
one million matrices in one million tuples. We expect that this
enhancement will speed up certain computations by as much as two
orders of magnitude. We also plan to add special support to the

SimSQL optimizer and execution engine to handle the new vector
and matrix types. For example, the optimizer will be modified
so that it understands the semantics of operations over vectors and
matrices, and can automatically choose the best implementation for
common computational patterns that appear in machine learning, for
example, the construction of a Gram matrix from a table of vectors.

With the recent open source release of SimSQL, we expect that
user experiences with the system will point the way toward new
research and system challenges, as well as new applications. Our
hope is to demonstrate the utility of designing a database system in
which Monte-Carlo-based stochastic analytics are fundamental.
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