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ABSTRACT
In this work we establish and point out connections be-
tween the notion of query-answer causality in databases and
database repairs, model-based diagnosis in its consistency-
based and abductive versions, and database updates through
views. The mutual relationships among these areas of data
management and knowledge representation shed light on
each of them and help to share notions and results they have
in common. In one way or another, these are all approaches
to uncertainty management, which becomes even more rel-
evant in the context of big data that have to be made sense
of.

1. INTRODUCTION
Causality is not only a deep subject that appears at the foun-
dations of many scientific disciplines, but also something we
want to represent and compute in order to deal with the
uncertainty of data, information and theories. In data man-
agement, the need to understand and compute why certain
(query) results are obtained or not, or why certain natural
semantic conditions are not satisfied can only grow and be-
come more complex when confronted with big data. It is
difficult to make sense of the uncertainty associated to big
data, and causality is a fundamental and systematic way to
confront the problem.

Our current research is motivated by trying to understand
causality in data management from different perspectives.
As described below, there are fruitful connections among
fours forms of reasoning: inferring causes from databases,
model-based diagnosis, consistent query answering (and re-
pairs), and view updates. They all reflect some sort of un-
certainty about the information at hand.

When querying a database, a user may not obtain the ex-
pected results, and the system could provide some expla-
nations. They could be useful to further understand the

data or reconsider the query. A notion of causality-based
explanation for a query result was introduced in [21].

Intuitively, a tuple t is an actual cause for an answer ā to
a conjunctive query Q from a relational database instance
D if there is a “contingent” set of tuples Γ, such that, af-
ter removing Γ from D, removing/inserting t from/into D
causes ā to switch from being an answer to being a non-
answer. Actual causes and contingent tuples are restricted
to be among a pre-specified set of endogenous tuples, which
are admissible, possible candidates for causes, as opposed to
exogenous tuples. (For non-causality-based explanations for
query answers in DL ontologies, see [4].)

Since some causes may be stronger than others, [21] also
introduces and investigates responsibility, that reflects the
relative degree of actual causality. In applications involving
large data sets, it is crucial to rank potential causes accord-
ing to their responsibilities [20, 21].

Actual causation and responsibility, as used in [21], can be
traced back to [15, 6]. For connections between causality
and provenance, see [21, 20].

Model-based diagnosis, and consistency-based diagnosis in
particular [23], is an area of knowledge representation. A
system specification in a logical formalism and an a system’s
observation are given. Typically, the specification tells us
how the system works under normal conditions, the obser-
vation is unexpected under those conditions, and an expla-
nation for the failure is required.

In a different direction, a database instance D may not sat-
isfy certain intended integrity constraints (ICs). A repair
of D is a database D′ that does satisfy the ICs and mini-
mally departs from D. Different forms of minimality have
been investigated. A consistent answer to a query Q from
D wrt. the ICs is an answer to Q that is obtained from all
possible repairs, i.e. is invariant or certain under the class of
repairs (see [2] for a recent survey). (Not in the framework
of repairs, consistency-based diagnosis techniques have been
applied to restoring a DB from IC violations [12].)

Interestingly, deeper and useful connections between these
areas (and others, see below) are starting to emerge. Actu-
ally, we have reported in [24], where more results and details
can be found, on new results about precise connections be-
tween causality for query answers in databases, database



repairs wrt. denial constraints, and consistency-based diag-
nosis.

More precisely, it is possible to obtain database repairs from
causes, and the other way around. Then, the vast body of re-
search on database repairs can be applied to the newer prob-
lem of determining actual causes for query answers. We un-
veil a strong connection between computing causes and their
responsibilities for conjunctive queries, on the one hand, and
computing both subset-based and cardinality-based repairs in
databases [19] wrt. denial constraints, on the other hand.
These computational problems can be reduced to each other.
Some results about this connection are briefly presented in
Section 2.

Furthermore, by formulating the causality problem as a di-
agnosis problem, it is possible to characterize causes in terms
of the system’s diagnoses. Actually, inferring and comput-
ing actual causes and responsibility in a database setting
become, in different forms, consistency-based diagnosis rea-
soning problems and tasks. More specifically, a causal ex-
planation for a conjunctive query answer can be viewed as a
diagnosis, where in essence the relational database provides
the system description, and the observation is the query an-
swer. Some results are summarized in Section 3.

Abduction, as another approach to model-based diagnosis,
can also be used to characterize causes for answers to queries,
in particular Datalog queries. We present some results on
this connection in Section 4.

We conclude this overview of mutual relationships between
database causality and other areas of data management and
knowledge representation by making some very general re-
marks, in Section 5, on database updates through views.
We point out several connections with the above mentioned
areas and problems.

2. CAUSES AND REPAIRS
We assume that a relational instance is split in two subin-
stances, say D = Dn ∪ Dx, where Dn and Dx are formed
by endogenous and exogenous tuples, respectively. The for-
mer tuples are possible candidate for causes. Now, given a
boolean conjunctive Q, a tuple t ∈ Dn is a counterfactual
cause for Q if D |= Q and D r {t} ̸|= Q. A tuple t ∈ Dn

is an actual cause for Q, if there exists Γ ⊆ Dn, called a
contingency set, such that t is a counterfactual cause for Q
in D r Γ [20].

The numerical function, responsibility, reflects the relative
degree of causality of a tuple for a query result. More pre-
cisely, the responsibility of an actual cause t for Q, denoted
by ρ(t), is the numerical value 1

(|Γ|+1)
, where |Γ| is the size

of the smallest contingency set for t (with minimum cardi-
nality). Tuples with higher responsibility are considered to
provide more interesting explanations for query results [20,
21].

We will denote with CS(Dn, Dx,Q) the set of actual causes
for Q (being true) in instance D = Dn ∪Dx. The following
(anti)monotonicity results immediately hold.

Proposition 1. Let (Dn)′, (Dx)′ denote updates of Dn, Dx

by insertion of tuple t, resp. It holds: (a) CS(Dn, Dx,Q) ⊆
CS((Dn)′, Dx,Q). (b) CS(Dn, (Dx)′,Q) ⊆ CS(Dn, Dx,Q).
2

Actually, the set of actual causes may shrink by adding an
exogenous tuple [24]. The possible loss of actual causes,
which shows a non-monotonic behavior, is in line with the
connections of causality with database repairs and model-
based diagnosis, both of which have associated reasoning
tasks that are also non-monotonic.

Now assume that the query is of the form Q : ∃x̄(P1(x̄1) ∧
· · · ∧Pm(x̄m)), with x̄ = ∪x̄i, and Q is unexpectedly true in
D, i.e we expected D |= ¬Q. Then, we may want to trace
back the causes for Q to be true.

We first notice that ¬Q is logically equivalent to the de-
nial constraint (DC) κ(Q) : ∀x̄¬(P1(x̄1) ∧ · · · ∧ Pm(x̄m))
(that is also sometimes written as the Datalog constraint,
← P1(x̄1), . . . , Pm(x̄m)). If Q is not expected to hold, we
may consider D to be inconsistent wrt. κ(Q). Repairs of D
wrt. κ(Q) may be considered.

More precisely, we first consider the S-repairs (aka. subset-
repairs), which are those consistent instances obtained from
D via tuple insertion/deletion and make the symmetric dif-
ference with D minimal wrt. set inclusion. In the case of
DCs, S-repairs are subsets of D that do not have any proper
subset that is a repair [2]. Next, we consider the class con-
taining the set differences between D and those S-repairs
that do not contain tuple t ∈ Dn, and are obtained by re-
moving a subset of Dn:

DF(D,Dn, κ(Q), t) = {D rD′ | D′ ∈ Srep(D,κ(Q)),
t ∈ (D rD′) ⊆ Dn}. (1)

Here, Srep(D,κ(Q)) denotes the class of S-repairs of in-
stance D wrt. κ(Q).

Proposition 2. GivenD = Dn∪Dx, a BCQQ, and t ∈ Dn:
(a) t is an actual cause for Q iff DF(D,Dn, κ(Q), t) ̸= ∅.
(b) If DF(D,Dn, κ(Q), t) = ∅, then ρ(t) = 0.
(c) If ρ(t) ̸= 0, ρ(t) = 1

|s| , where s ∈ DF(D,Dn, κ(Q), t) and
there is no s′ ∈ DF(D,Dn, κ(Q), t) such that, |s′| < |s|. 2

In the other direction, it is also possible to obtain repairs
from actual causes. In fact, consider the database instance
D and the denial constraint κ : ← A1(x̄1), . . . , An(x̄n). As
usual, a boolean conjunctive violation view, V κ : ∃x̄(A1(x̄1)∧
· · · ∧An(x̄n)), can be associated to κ.

Given an inconsistent instance D wrt. κ, we collect all S-
minimal contingency sets associated with the actual cause t
for V κ, as follows:

CT (D,Dn, V κ, t) = {s ⊆ Dn | D r s |= V κ, D r (s ∪ {t}) ̸|=
V κ, and ∀s′′ $ s, Dr (s′′∪{t}) |= V κ}.

Proposition 3. (a)D is consistent wrt. κ iff CS(D, ∅, V κ) =
∅. (b) D′ ⊆ D is an S-repair for D iff, for every t ∈ DrD′,
t ∈ CS(D, ∅, V κ) and D r (D′ ∪ {t}) ∈ CT (D,D, V κ, t). 2

This proposition is stated for a single DC. However, it is
possible to obtain repairs from causes for larger sets of DCs.



In [24] we provide a (naive) algorithm that computes the
S-repairs for an inconsistent instance D and a set Σ of DCs
from causes for their violation views being true.

Consider an instance D, and a DC κ. The following proposi-
tion establishes a relationship between consistent query an-
swering (CQA) wrt. the S-repair semantics [2] and actual
cases for the violation view V κ.

Proposition 4. A ground atomic query A is consistently
true, denoted D |=S A, iff A ∈ D r CS(D, ∅, V κ). 2

Along a similar line, C-repairs1 are related to most responsi-
ble actual causes. We can collect the most responsible actual
causes for V κ:

MRC(D,V κ) = {t ∈ D | t ∈ CS(D, ∅, V κ), ̸ ∃t′ ∈ CS(D, ∅, V κ)
with ρ(t′) > ρ(t)}.

Proposition 5. For an instance D and denial constraint
κ, D′ is a C-repair for D wrt. κ iff for a t ∈ D r D′:
t ∈MRC(D,V κ) and D r (D′ ∪ {t}) ∈ CT (D,V κ, t). 2

In our ongoing research we have established and exploited
a close connection (to be reported somewhere else) between
consistent answers -under the cardinality-based repair se-
mantics- to conjunctive queries wrt. denial constraints and
most-responsible causes. These problems can be reduced to
each other.

The partition of a database into endogenous and exogenous
tuples has been exploited in the context of causality. How-
ever, this kind of partition is also of interest in the context
of repairs. Considering that we should have more control
on endogenous tuples than on exogenous ones, which may
come from external sources, it makes sense to consider en-
dogenous repairs that are obtained by updates (of any kind)
on endogenous tuples. For example, in the case of violation
of denial constraints, endogenous repairs would be obtained
-if possible- by deleting endogenous tuples only.

If there are no repairs based on endogenous tuples only, a
preference condition could be imposed on repairs, privileging
those that change exogenous the least. (Of course, it could
also be the other way around, i.e. we may feel more inclined
to change exogenous tuples than our endogenous ones.)

Actually, we could go even further and apply notions of pre-
ferred repairs [25, 26]. If Prep denotes a given class of pre-
ferred repairs, it would be possible to explore the use of
a relationship as the one in (1), replacing Srep by Prep,
and by doing so, define other notions of causes, say tuples
that are Pcauses for query answers. Considering other, e.g.
preference based, forms of causality was mentioned as an
interesting open direction in [21, 20].

As a further extension, it could be possible to assume that
combinations of (only) exogenous tuples never violate the
ICs, something that could be checked at upload time. In

1These are cardinality-repairs, and are defined as the S-
repairs, but they minimize the cardinality of the symmet-
ric difference. For DCs, they become maximal subsets, in
cardinality, of the original instance [2].

this sense, there would be a part of the database that is
considered to be consistent, while the other is subject to
possible repairs. A situation like this has been considered,
for other purposes and in a different form, in [14].

Actually, going a bit further, we could even consider the
relations in the database with an extra, binary attribute, N ,
that is used to annotate if a tuple is endogenous or exogenous
(it could be both), e.g. a tuple like R(a, b, yes). ICs could be
annotated too, e.g. the “exogenous” version of DC κ, could
be κE : ← P (x, y, yes), R(y, z, yes), and could be assumed
to be satisfied.

3. CAUSES AND CONSISTENCY-BASED
DIAGNOSIS

As above, let D = Dn ∪ Dx be a database instance for
schema S, andQ : ∃x̄(P1(x̄1)∧· · ·∧Pm(x̄m)) a BCQ. Assume
that Q is, possibly unexpectedly, true in D. That is, for
the associated DC κ(Q) : ∀x̄¬(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), it
holds D ̸|= κ(Q), i.e. D violates the DC. This becomes
our observation, and we want to find causes for it, using
a diagnosis-based approach, more precisely a consistency-
based diagnosis approach [23].

We consider a diagnosis problem, M = (SD , Dn,Q), as-
sociated to Q. Here, SD is a FO system description (or
specification) containing the following elements:

(a) Reiter’s logical reconstruction ofD as a FO theory [22].

(b) Sentence κ(Q)ext, which is κ(Q) rewritten as follows:

κ(Q)ext : ∀x̄¬(P1(x̄1) ∧ ¬abP1(x̄1) ∧ · · · ∧ Pm(x̄m)∧
¬abPm(x̄m)).

(c) The sentence ¬κ(Q) ←→ Q, where Q is the initial
boolean query.

(d) The inclusion dependencies: ∀x̄(abP (x̄)→ P (x̄)).

Here, predicate ab stands, as usual, for abnormality. Then,
the intended meaning of κ(Q)ext is that under normal con-
ditions on the tuples, the DC is satisfied.

Now, the last entry, Q, inM is the observation (or the fact
that it is true), which together with the system description,
plus the assumption that all tuples are normal (i.e. not ab-
normal), produces and inconsistent theory. Consequently,
a diagnosis for the diagnosis problem M is a ∆ ⊆ Dn,
such that SD ∪ {abP (c̄) | P (c̄) ∈ ∆} ∪ {¬abP (c̄) | P (c̄) ∈
D r∆} ∪ {Q} becomes consistent.

With D(M, t) we denote the set of all subset-minimal diag-
noses forM that contain tuple t ∈ Dn. Similarly,MCD(M, t)
denotes the set of diagnoses ofM that contain tuple t ∈ Dn

and have the minimum cardinality (among those diagnoses
that contain t). ClearlyMCD(M, t) ⊆ D(M, t).

Proposition 6. (a) Tuple t ∈ Dn is an actual cause for Q
iff D(M, t) ̸= ∅.
(b) For tuple t ∈ Dn, ρ(t) = 0 iff MCD(M, t) = ∅. Other-
wise, ρ(t) = 1

|s| , where s ∈MCD(M, t). 2

Taking advantage of results and techniques for database re-
pairs and consistency-based diagnosis through hitting sets,



as done in [23], it is possible to extend complexity results re-
ported in [21] for the causality and responsibility problems
for conjunctive queries. This is particularly the case of the
problem of deciding whether a tuple is a most responsible
cause for a query answer.

4. CAUSES AND ABDUCTION
Causality in databases (and everywhere) can be seen as a
very fundamental concept to which many other data man-
agement notions are connected. Some of them have been
mentioned above, and there are others. We envision a broad,
common framework in which these rich connections can be
formulated and investigated, contributing to shed light on
each of the areas involved, and most importantly, to take
advantage of each them for theoretical and computational
purposes in relation to the others.

Still from the model-based diagnosis point of view, but this
time appealing to abductive diagnosis [7, 10], it is possible to
extend and formulate the notion of query-answer causality
for Datalog queries via abductive diagnosis from Datalog
specifications. So, the connection between (query-answer)
causality and abduction via Datalog makes it possible to go
beyond conjunctive queries (the case considered in [21]),2

extending causality to, e.g. recursive queries, and obtaining
new results for them. Notice that consistency-based diagno-
sis is usually practiced with first-order (FO) specifications,
but abductive reasoning is commonly performed under logic
programming approaches [9, 11].

A Datalog abduction problem (DAP) [11] is of the formAP =
⟨Π,EDB ,Hyp,Obs⟩, where: (a) EDB is an input structure
(a set of ground atoms), (b) Π is a set of Datalog rules,
(c) Hyp (the hypothesis) and Obs (the observations) are fi-
nite sets of ground atoms with Π ∪ EDB ∪ Hyp |= Obs.3

The elements of Hyp are the abducible atoms (or simply,
abducibles), and they, in combinations, should explain the
observations. An abductive diagnosis (or simply, a solution)
for AP is a minimal subset ∆ ⊆ Hyp (wrt. subset mini-
mality), such that Π ∪ EDB ∪ ∆ |= Obs. We denote with
Sol(AP) the set of abductive diagnoses for problem AP.

The relevance problem is a decision problem that naturally
arises in abduction: Given AP = ⟨Π,EDB ,Hyp,Obs⟩, and
a ground fact h ∈ Hyp, determine whether h is relevant in
AP, i.e. h occurs in an abductive diagnosis of AP, denoted
h ∈ Rel(AP).

Now, assume we are given a relational instance with D =
Dx∪Dn, and a Datalog program Π that represents a boolean,
possibly recursive query. Then, Π has a highest level zero-
ary predicate ans that returns the result (or not). If Π∪D |=
ans, we want to find actual causes and their responsibility
degrees for ans. It holds that actual causes for ans4 can be
obtained from abductive diagnosis of the associated DAP

2In [20] the authors apply the definition of cause as above
to monotone queries.
3We will assume that no predicate in a rule head of Π ap-
pears in EDB ∪ Hyp.
4That can be defined by means of an extension of the def-
inition of actual causes for conjunctive queries as given in
Section 2.

APc := ⟨Π, Dx, Dn, {ans}⟩, where ans is the observation,
Π ∪ Dx is the background theory, and Dn is the set of hy-
pothesis. More precisely, it holds: tuple t ∈ Dn is an actual
cause for ans iff t ∈ Rel(APc).

Now, in order to obtain responsibilities, consider againAPc =
⟨Π, Dx, Dn, {ans}⟩, with Sol(APc) ̸= ∅. N ⊆ Dn is a set of
necessary hypothesis if N is minimal (wrt. set inclusion),
such that Sol(APc

N ) = ∅, where APc
N = ⟨Π, Dx, Dn r

N, {ans}⟩. It holds: The responsibility of a tuple t for ans
is 1

|N| , where N is a necessary hypothesis set with minimum

cardinality, such that t ∈ N .

The notion of necessary hypothesis set we just introduced
extends the notion of (single) necessary hypothesis that has
been studied in abduction [10, 11]. The extended notion not
only captures responsibility as defined in [21] for Datalog
queries, but it is also interesting in the context of abduc-
tion per se. In particular, it provides a sort of quantitative
metric to rank relevant hypothesis according to their degree
of necessity, which can be captured in terms of the sizes of
necessary hypothesis sets to which they belong. In partic-
ular, the smaller the size of a necessary hypothesis set, the
the more necessary are its elements to be included among
the relevant hypothesis that explain the observation. We
believe that the degree of necessity in abduction captures
the notion of responsibility as introduced in the context of
causality [6].

Example 1. Consider an instance D with predicates R and
S as below, and the query Π: ans ← R(x, y), S(y).

R X Y
a1 a4

a2 a1

a3 a3

S X
a1

a2

a3

The DAP APc = ⟨Π, ∅, D, {ans}⟩ (all the tuples are endoge-
nous) has two abductive diagnosis: ∆1 = {S(a1), R(a2, a1)}
and ∆2 = {S(a3), R(a3, a3)}. Then, Rel(APc) = {S(a3),
R(a3, a3), S(a1), R(a3, a3)}. It is easy to verify that the
relevant hypothesis are the actual causes for ans.

The necessary hypothesis sets of APc all have cardinality 2.
Thus, the responsibility of each actual cause is 1

2
. 2

In [21], complexity and algorithmic results for query-answer
causality apply to conjunctive queries. Now they can be
extended by applying results and techniques for abductive
reasoning, as those obtained in [11, 13]. These extensions
are a matter of ongoing research.

5. ABDUCTION, VIEW UPDATES AND
REPAIRS

Another direction to explore for fruitful connections with all
the above turns around the view update problem, which is
about updating a database through views. The problem is
about minimally changing the underlying database (i.e. the
base relations), in such a way that the changed base instance
produces the intended changes in the view contents. Put
in other terms, it is an update propagation problem, from
views to base relations. This old and important problem in
databases.



Since intended changes on the views may create alterna-
tive, admissible candidates to be the updated underlying
database. As a consequence, user knowledge imposed through
view updates creates or reflects uncertainty about the base
data.

The view update problem is related to all the problems men-
tioned above. We mention some connections without going
into details. First of all, the view update problem has been
treated from the point of view of abductive reasoning [16, 8].
The idea is to “abduce” changes on base tables that explain
the intended changes on the views.

The view update problem, specially in its particular form
of of deletion propagation5, has been recently related in [17,
18] to causality as introduced in [21].

We also should mention that database repairs are related
to the view update problem. Actually, answer set programs
(ASPs) for database repairs (c.f. [5] for a comprehensive
account and references) implicity repair the database by up-
dating conjunctive combinations of intentional, annotated
predicates. Those logical combinations -views after all- cap-
ture violations of integrity constraints in the original database
or along the (implicitly iterative) repair process (hence the
need for annotations).

Even more, in [3], in order to protect sensitive information,
databases are explicitly and virtually “repaired” through se-
crecy views that specify the information that has to be kept
secret. In order to protect information, a user is allowed
to interact only with the virtually repaired versions of the
original database that result from making those views empty
or contain only null values. Repairs are specified and com-
puted using ASP, and an explicit connection to prioritized
attribute-based repairs [2] is made [3].

Finally, we should note that abduction has also been explic-
itly applied to database repairs [1]. The idea, again, is to
“abduce” possible repair updates that bring the database to
a consistent state.

The areas of causality for query answers, database repairs
and consistent query answering, model-based diagnosis (in
its consistency-based and abductive versions),6 and database
updates through views will all benefit from a deeper investi-
gations of their mutual relationships, for better understand-
ing them, and taking advantage of known results for some
of them to obtain new results for the others.
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