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ABSTRACT

Learning novel concepts and relations from structured data sets,
such as relational databases, is an important problem with many ap-
plications in data management and machine learning. It is well es-
tablished that the same data set may be represented under different
schemas due to various reasons, such as efficiency, data quality, and
usability. Further, the schema of a database may evolve over time.
In this paper, we argue that relational learning algorithms should
be schema independent, i.e. they should return basically the same
results across various schemas of the same data set. Schema inde-
pendent relational learning algorithms require less manual tuning
and are easier to use over real-world data sets. We formally define
and explore this property for different types of relational learning
algorithms. We analyze the schema independence of some popular
relational learning algorithms both theoretically and empirically.
Our results indicate that these algorithms are not generally schema
independent and will deliver different results and accuracies or re-
quire different amount of training data over different schemas for
the same data set.

1. INTRODUCTION

Learning novel concepts and relations from structured data sets,
such as relational databases, is an important learning problem with
a wide range of applications [23, 12, 20]. Given a relational database
and training data, (statistical) relational learning algorithms learn
the definitions for target concepts or relations as (weighted) first
order logic formulas. Since it normally takes a prohibitively long
time to explore all possible definitions for a target concept even
for databases with relatively small number of relations, these algo-
rithms selectively examine a “promising" subset of candidate defi-
nitions [15, 19, 22, 11]. The learning algorithms find the promising
definitions according to their syntactic properties: they start with an
initial set of clauses and iteratively generalize or specialize them by
modifying their syntaxes. For example, they may replace constants
(i.e. objects) or variables with some other variables in adding new
relations to a clause to create new definitions.

Nevertheless, it has been well established that given some con-
ditions that frequently occur in real world databases, people can
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and do represent the same data set using different schemas with di-
verse syntactic characteristics. [1, 21]. Table 2 shows two different
schemas for the Mutagenesis dataset, which contains information
about atoms, molecules, and their relationships and is widely used
in inductive logic programming and statistical relational learning
research [3, 18]. Relational learning researchers usually use the
Original schema in Table 2 to represent the Mutagenesis dataset.
This schema is (almost) in sixth normal form [4], which is generally
discouraged in database literature due to its extremely poor perfor-
mance for processing queries [1, 21]. It also contains a redundant
attribute, drug, in relation arm. Hence, a professional database de-
signer may choose Schema I in Table 2 to represent this dataset.

Similarly, Table 1 shows some relations of the original and some
alternative schemas for UW-CSE' database, which stores informa-
tion about students and professors in a computer science depart-
ment. This data set is widely used in statistical relational learn-
ing community to evaluate the effectiveness of statistical relational
learning algorithms [11, 22]. The original schema of UW-CSE is
in sixth normal form. Because each student, stud, has only one
phase and years in relations inPhase and yearsInProgram, a profes-
sional database designer may compose relations student, inPhase,
yearsinProgram, a new relation called studentInfo. She may also
combine relations professor and hasPosition represent the database
using Schema 1 to speed up the query processing. In order to im-
prove data quality and assure that each person involved in a project
is either a student or a professor, she may also partition relation
project to two relations projectStud and projectProf and define for-
eign key constraints between attribute stud in relations student and
projectStud and attribute prof in relations professor and project-
Prof and store the data set in form of Schema 2. If the data be-
comes rather large, she may further refine Schema 2 to Schema 3
or Schema 4 to improve the performance of answering queries over
the database.

People may choose to represent their data in one way or another
for several reasons. It is easier to enforce some integrity constraints
over decomposed schemas such as the original schema or Schema
1 for UW-CSE data set [1]. However, because these schemas con-
tain too many relations, they are hard to understand and maintain.
It also takes a long time to answer queries over databases with such
schemas [1, 21]. Thus, one may sacrifice data quality and choose
more composed (or denormalized) schemas, such as Schema 3 or
Schema 4 for UW-CSE data set to achieve better usability and/or
performance. She may partition each relation to its subsets (i.e.
horizontal decomposition) to distribute the data and enforce data in-
tegrity constraints or union relations to create a more usable schema
with smaller number of relations. A database designer may also hit
a middle ground by choosing a style of representation for some re-
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project(prj,person)

yearsInProgram(stud,years)

project(prj,person)

projectStud(prj,stud)

project(prj,stud,prof)

Original Schema Schema 1 Schema 2 Schema 3 Schema 4
student(stud) student(stud) student(stud,phase,years) | student(stud,phase,years) | student(stud,phase,years,prj)
inPhase(stud,phase) studInfo(stud,phase,years)

professor(prof)
hasPosition(prof,position)

professor(prof,position)

professor(prof,position)
projectProf(prj,prof)

professor(prof,position)

professor(prof,position,prj)

Table 1: The original and alternative schemas of the UW-CSE data set.

Original Schema Schema 1

bond(drug,atom1,atom?2,btype)
atm(drug,atom,elem,atmtype,charge)
logp(drug,hydrophob)

bond(drug,atom1,atom?2,btype)
atm(atom,elem,atmtype,charge)
comp(drug,energy,hydrophob)

lumo(drug,energy)

Table 2: Different schemas for the Mutagenesis dataset.

lations and another style for other relations in the schema. Further,
as the relative priorities of these objectives changes over time, the
schema will also evolve.

Since relational learning algorithms search for the definition of
target relations by modifying syntactic properties of clauses, they
may learn different definitions over different schemas for the same
data set. For instance, many top-down relational learning algorithm
such as FOIL start their search by creating a clause with one rela-
tion and try different variables as its arguments [19, 23]. They pick
the promising clauses that may lead to the desired definition us-
ing their performances over training data and repeats the process
by adding new relations to these clauses. Thus, it may generate
and examine different sets of clauses over various schemas for the
same database, and deliver a different result over each schema. Ac-
cording to our experiments, FOIL defines relation advisedby(stud,
prof) based on co-authorship between student and professor over
a normalized schema such as Schema 2, for UW-CSE data set.
Nonetheless, it defines the same target relation based on the courses
a student takes with the professor over a denormalized schema like
Schema 4. As heterogeneity in representation is a widely accepted
property of real-world data sets [27], current relational learning al-
gorithms may not scale to work over large number of data sets with-
out experts’ interventions.

We argue that a relational learning algorithm should be schema
independent, i.e. it should deliver essentially the same definition for
the target concept or relation across various schemas for the back-
ground knowledge (i.e. database) given the same training data. A
schema independent learning algorithm is guaranteed to be effec-
tive over the data sets that are organized differently from the ones
used to test it. It requires less manual tuning to apply and maintain
over new data sets, therefore, it can be used over large number of
data sets. It can also use background knowledge and training data
from multiple data sources with different styles of representation
more easily an effectively.

To the best of our knowledge, the property of schema indepen-
dence has not been explored for relational learning algorithms. Our
contributions in this paper are as follows:

e We introduce and formally define the property of schema in-
dependence and explore its benefits for relational learning al-
gorithms. We define the degree of schema independence for a
relational learning algorithm as its robustness over transforma-
tions that modify the database schema and preserve its informa-
tion content.

e We theoretically analyze the degree of schema independence

for some of the well known relational learning algorithms over
a frequently used family of schema transformations called ver-
tical decomposition. Our investigation suggests that these trans-
formations considerably modify the maximum amount of train-
ing data required by these algorithms.

e We also empirically study the schema independence of some
relational learning algorithms under vertical and horizontal de-
composition transformations. Our results indicate that trans-
forming schema considerably affects the effectiveness, efficiency,
and query complexities for these algorithms.

This paper is organized as follows. Section 2 describes the ba-
sic definitions and related works. Section 3 introduces and formally
defines the property of schema independence for relational learning
algorithms. Section 4 analyzes the impact of some transformations
on the maximum amount of training data required to learn concepts
by some learning algorithms. Section 5 contains our empirical re-
sults and Section 6 concludes the paper.

2. BACKGROUND
2.1 Related Work

Researchers in database systems have explored the relationship
between query answering algorithms and different representations
for a database [5, 14, 28]. They have argued in favor of the query
answering algorithms whose results do not depend on specific rep-
resentations of the database, as they can be scaled and used over a
large number of databases without experts’ interventions. Whether
this property can be achieved for relational learning algorithms has
not been explored. Our paper explores the relationship between
data representation and accuracy and sample complexity of learn-
ing algorithms to answer these questions for relational learning al-
gorithms. Schema independence extends the notion of logical data
independence [5] for relational learning algorithms.

In order to achieve logical data independence for database queries,
some researchers have proposed to convert schemas to a common
format, namely universal relation [14]. Queries over original schemas
need to be also translated to queries over the common format. This
approach considers only the variations in data representation cre-
ated by assigning attributes to different relations. Nevertheless, the
heterogeneity in organizing data may be caused by other types of
schema modifications [1]. It is not also clear if every schema can be
represented in such a common format [1, 13]. Transforming var-
ious schemas and queries to a common format may itself require
some experts’ interventions, which is not desirable and reduces the
degree of logical data independence. Hence, we argue for represen-
tation independence of the learning algorithms instead of finding a
common format and transforming all schemas to such form.

One may define new predicates based on schema relations and
use them to facilitate relational learning [24, 26]. We, however,
explore the effects of schema representations on learning.

2.2 Basic Definitions



Let Atir be a countably infinite set of symbols that contains the
names of attributes. The domain of attribute A is a countably in-
finite set of values (i.e. constants or objects) that A may contain.
We assume that all attributes share a single domain dom. A rela-
tion is a finite subset of Attr. We use terms predicate and relation
interchangeably. A tuple over relation R is a total map from the
set of attributes in R to dom. The relation instance Ir of relation
R is a finite set of tuples. A constraint restricts the properties of
data stored in a database. Examples of constraints are functional
dependencies and inclusion dependencies. Functional dependency
A — B in relation R, where A, B C R, states that the values of
attribute set A uniquely determine the values of attributes in B in
each tuple in every relation instance /. Inclusion dependency be-
tween attribute C' € R and D € S, denoted as C C D, states
that in all instances of Ir and Ig values of attribute C' must also
appear attribute D. A schema is a pair R = (R, X), where R is a
finite set of relations and ¥ is a finite set of constraints. An instance
of schema R is a mapping [ over R that associates each relation
R € R to arelation instance /r.

A literal is a relation, or the negation of a relation. A definite
Horn clause (Horn clause or clause, for short) is a finite set of lit-
erals that contains exactly one positive literal. The positive literal
is called the head of the clause, and the set of negative literals is
called the body. The head, which does not belong to schema R, is
the target relation. The literals in the body are relations that belong
to schema R. A clause has the form:

S(u) « Li(u1), -+, Ln(un).

wheren > 0, L;,1 < j <n,is R; € R, and v and u; are sets of
variables or constants. A Horn expression is a set of Horn clauses.
A Horn definition is a Horn expression with the same predicate in
the heads of all clauses.

3. FRAMEWORK

We adapt the notion of equivalency between schemas from [9,
7] to find if two schemas represent the same information. We de-
note the set of instances of schema S as Z(S). Given schemas S
and R, a transformation is a mapping 7 : Z(R) — Z(S). For
brevity, we write transformation 7 as 7 : R — S. Schema S
dominates schema R via transformation 7 : R — S, iff transfor-
mation 77! : & — TR exists and the composition of 7 and 7~ *
is the identity mapping on Z(R). In this case, we call transfor-
mation 7 invertible. Schemas S and R are equivalent if and only
if they dominate each other. If S and R are equivalent, one can
convert instance I € Z(S) to instance J € Z(R) and reconstruct
I from the available information in J. Thus, equivalency between
two schemas indicates that they essentially represent the same in-
formation.

EXAMPLE 3.1. Let the following functional and inclusion de-
pendencies hold over the relations of Original Schema that are
shown in Table 1: inPhase.stud C yearsInProgram.stud,
yearsInProgram.stud C inPhase.stud, stud — phase, stud
years. One may join relations inPhase and yearsInPrograms
to map each instance of the Original Schema to an instance of
Schema 1. Further, each instance of Schema 1 can be mapped to an
instance of the Original Schema by projecting relation studInfo
to relations inPhase and yearsInProgram(i.e. vertical decom-
position). Hence, these schemas are equivalent.

We would like to learn essentially same Horn expressions for
target relations over schemas that represent the same information.
A relational learning algorithm generally may limit its hypothe-
sis space by choosing certain hypothesis language for its target

—

relations’ definitions. For instance, it may consider only clauses
whose numbers of literals are fewer than a given number. In or-
der to learn the same definition for a target relation, one should
be able to express essentially same definitions for a target relation
over equivalent schemas. More formally, let £ be the hypothesis
language that is a subset of Horn expressions. Invertible transfor-
mation 7 : R — S is definition preserving w.r.t. L iff there exists
a function § : £ — L such that for every definition p € £ and
I € Z(R) p(I) = 6(p)(r(I)). Schemas S and R are definition
equivalent iff there are definition preserving transformations from
S to R and from S to R.

Composition of two Horn expressions p and ¢, denoted as pog, is
a Horn expression created by applying p to the head predicates of ¢
[1]. Language L is closed under composition with Horn expression
q iff the composition of every definition p € £ and g, po g, belongs
to L.

PROPOSITION 3.2. Given schemas S and 'R, invertible trans-
formation 7 : S — R, and language L, if L is closed under com-
position with 771, for each definition p € L over S there is a
definition v € L over R such thatr =po 1 "

Proof: The proof is similar to the proof of Theorem 2.1 in [7].

According to Proposition 3.2, if schemas R and S are equivalent
and L is closed under the composition with the invertible transfor-
mations from R to S and S to R, each definition over S can be
rewritten as a definition over schema R and vice versa. We call
these definitions equivalent.

EXAMPLE 3.3. Let the hypothesis language be the set of Horn
definitions. Because this language is closed under composition
with join and projection, the Original Schema and Schema 1 in
Example 3.1 are definition equivalent.

Sample based relational learning algorithms take labeled exam-
ples and background knowledge (i.e. database instance), and learn
first-order clausal theories. This type of relational learning algo-
rithms are normally studied in the context of Inductive Logic Pro-
gramming (ILP) and statistical relational learning (SRL). In this
paper, we focus on the algorithms whose hypothesis language is a
subset of or equal to Horn expressions. We define the property of
schema independence for sample based learning algorithms.

DEFINITION 3.4. A sample based learning algorithm is schema
independent iff it learns equivalent definitions for the same target
relation over equivalent schemas given the same training data.

Several algorithms have been proposed to perform exact learn-
ing via queries in relational domains [10, 25]. These algorithms
differ from the standard supervised learning task in that they learn
by asking queries to an oracle, instead of taking a set of labeled
examples as input. The questions are usually of types equivalence
queries (EQ) and membership queries (MQ). We consider the algo-
rithms whose hypothesis language is a subset of or equal to Horn
expressions. We define the property of schema independence for
query based learning algorithms as follows.

DEFINITION 3.5. A query based learning algorithm is schema
independent iff it learns equivalent definitions for the same target
relation over equivalent schemas by asking the same numbers of
EQs and MQs.

One may propose a stronger condition for schema independence
that requires query based learning algorithms to ask similar queries
to learn the same relation across equivalent schemas. However,
in this paper we consider the main source of variation to be the
number of queries asked to the oracle.



Algorithm EQs MQs
A2 [10] 2mpkaTE | m2pket3F  nmpkatk
Learn-MQ [25] | pmk? pmk®(n + mkF)

Table 3: Query complexities of some query-based relational learning al-
gorithms.

4. SCHEMA INDEPENDENCE OF QUERY-
BASED ALGORITHMS

Khardon [10] studied the task of learning function-free first-order
Horn expressions using the query based learning model and pro-
posed a query based algorithm called A2. A2 uses a pairing op-
eration similar to least general generalization (lgg) to construct
clauses, considering only pairs of literals which guarantee an in-
jective mapping between variables. Following this algorithm, Sel-
man and Fern [25] developed an algorithm called Learn-MQ in
the learning from entailment setting that performs exact learning
of first-order definite theories via queries. The number of queries
asked by these algorithms to learn a relation over a database is prov-
ably bounded by properties of the database schema [10, 25]. Ta-
ble 3 shows the maximum number of queries asked by these algo-
rithms. The parameters p and a denote the number of relations in
the schema and the largest arity of any relation in the schema, re-
spectively. The parameter k denotes the largest number of variables
in a clause in the definition of the target relation. The number of
clauses in the definition of the target relation is shown by m. The
largest number of constants (i.e. objects) in any example is denoted
by n.

In this section we analyze the sensitivity of the upper bounds
on the number of queries asked by these algorithms, i.e. their
query complexities, to a well known family of database transfor-
mation called (lossless) vertical decomposition [1]. These trans-
formations are among the most frequently used transformations
over relational databases. We show a case where there is a con-
siderable difference in the number of queries required under two
equivalent schemas. Consider schema R = (R, X), where for
each relation R(Ay,---,A;) € R, we have [ > 2 and there are
I — 1 functional dependencies A; — A;, 2 < ¢ < [, in X.
Let S = (S, ) be another schema, such that for every relation
R(Ai,---,4;) € R, we have [ — 1 relations in S in form of
Si(A1,Ai), 2 < i < I. For each relation S;(A, A;) € S, Q
contains the functional dependency A; — A;. For each set of re-
lations S; (A1, A;), 2 < i < [, Q also contains 2(I — 1) inclusion
dependencies in form of S3.A; C S;.A4; and S;.4; C S3.A;4,
2 < j < I Ttis straightforward to show that R and S are equiv-
alent [1]. The transformation that maps the instances of R to S
is projection (i.e. decomposition) and the one that maps S to R
is join. The hypothesis languages of both A2 and Learn-MQ are
closed under composition with these transformations.

Let p(R) be the number of relations in R, a(R) be the largest
arity of any relation in R, and k(R ) be the largest number of vari-
ables in a rule that defines the target relation over R. We define
p(S), a(S), and k(S) analogously. Let the target relation ¢ be a
relation in S. If the number of relations in R is p = p(R) and the
maximum arity is a = a(R), then the maximum number of rela-
tions in S is p(S) = p(a — 1) as each relation is decomposed to
at most a — 1 relations. We also have a(S) = 2. Since the target
relation is a relation in S, the largest number of variables in a rule
for its definition over S, k(S) = a(S) = 2. This value over R
is kK(R) = a(R) = a. The number of clauses in the definition
of target relation, m, is equal to 1 for both schemas. Each relation
over S has smaller arity than its mapped relation in R. Thus, the

value of n over R, n(R), is greater than or equal to the value of n
over S, n(S).

Under schema R, the A2 algorithm would require at most 2mpa>®
EQs and m2pa*® + n(R)mpa** MQs. On the other hand, un-
der schema S, this algorithm requires at most 2mp(a — 1)2* EQs
and m*p(a — 1)2° + n(S)mp(a — 1)2* MQs. Under schema
R, the Learn-MQ algorithm would require at most pma® EQs and
pma®(n(R) + ma®) MQs. On the other hand, under schema
S, this algorithm require at most p(a — 1)m2? EQs and p(a —
)m2%(n(S) + m2%) MQs. The number of EQs and MQs for
schema R grows exponentially with the largest arity, while the
number of EQs and MQs for schema S grows linearly with this
property. Therefore, if we choose the value of a sufficiently large,
we observe considerable differences between the worst case query
complexities of both algorithms over schema R and S.

5. EMPIRICAL RESULTS
5.1 Sample-based systems

5.1.1 Experimental settings

In this section we evaluate the impact of representation on sample-
based relational learning algorithms using Aleph®. Aleph is a well
known ILP system that can emulate several other ILP systems. In
this paper, we use it to partially emulate FOIL [19] and Progol [15].
We carried experiments on the UW-CSE data set by Richardson and
Domingos [22], which consists of 12 relations, 2673 tuples, and
113 positive examples. Following [8], we generated negative ex-
amples using the closed-world assumption, and then sampled these
to obtain twice as many negative examples as positive examples.
Following the original authors of the data set, we divided the data
into 5 folds, each one corresponding to a different group of the CSE
department, and we tried to learn the relation advisedBy(stud,prof),
which indicates that student szud is advised by professor prof.

We have represented the data set using three equivalent schemas
that are mapped to each other via vertical decomposition (i.e. pro-
jection) and composition (i.e. join) transformations. We employed
the original schema, schema 2 and schema 4 shown in Table 1. For
schema 2, we replaced relations inPhase and yearsInProgram with
the composed relation studentInfo, we removed relations professor
and student, and replaced the relations project and publication with
projectStud, projectProf, publicationStud, and publicationProf in
the original schema, respectively. Schema 4 is the result of a ver-
tical composition of schema 2. The original schema contains 10
relations, schema 2 contains 9 relations, and schema 4 contains 3
relations.

For these experiments, we used a configuration similar to the one
used in [8, 6], with a few variations, as shown in Table 4. For the
original schema and schema 2, we set the upper bound on layers
of new variables (i) to 2, and for schema 4 we set it to 1. With
these numbers, the search spaces using all schemas are equivalent.
We varied the number of nodes to be explored when searching for
an acceptable clause (nodes) to evaluate how the size of the search
space affects the effectiveness over different schemas. We also var-
ied the beam size to emulate FOIL (openlist = I) and Progol (open-
list = infinite). When we varied the beam size, we set the number
of nodes to 100,000. For the rest of the parameters, we used their
default values.

In these experiments, we evaluate accuracy, precision, recall, and
running time, showing the average over 5-fold cross validation. We
run Aleph on a high performance computing cluster, which con-

Zhttp://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html



Parameter Value

Least positive coverage of a valid clause (minpos) 10
Maximum number of literals in a valid clause (clause- 5
length)

Maximum number of negative examples covered by a 1000
valid clause (noise)

Search strategy (search) heuristic
Least positive coverage of a valid clause (minpos) 10
Evaluation function (evalfn) compression
Layers of new variables (i) land?2

Table 4: Aleph parameters.

tains a heterogeneous mix of dual processor servers, with a range
between 4 and 48 GB of main memory, and running RedHat Enter-
prise Linux 6. Running times are shown in seconds (s) and minutes

(m).
5.1.2 Results

Table 5 shows the results of varying the number of nodes in the
search space and Table 6 shows the results of varying the beam size,
both under three different, but equivalent schemas. We first show
an example where, when emulating FOIL, Aleph learns different
clauses over the original schema and schema 4. Aleph learns the
following clauses over the original schema:

(1) advisedBy(A, B) +

inPhase(A, post_quals), publication(C, B).

(2) advisedBy(A, B) +

inPhase(A, post_generals), publication(C, B), publication(C, A).

However, under the same training data, Aleph learns the following
clauses over schema 4:
(3) advisedBy(A, B) +
studentInfo(A, post_quals,C, D, E).
(4) advisedBy(A, B) +

course(C, B, A, D, E), course(F, B, G, H, level_500).

The learned clauses over both schemas show that the student must
be in an advanced phase. This indicates that according to the train-
ing examples, mostly advanced students have an advisor. Over
schema 4, a common relation appearing in the learned clauses is
course, and it states that the student has been TA for a course of-
fered by his/her advisor, as shown in clause (4). FOIL is not able
to learn clauses that express this information under the original
schema because it would require to first learn that a course C' is
taught by professor B, and then learn that student A was a TA for
course C'. Because FOIL is a greedy algorithm, it selects other
clauses with higher score. On the other hand, a common concept
appearing in clauses learned under the original schema is that of
the advisor and student having a common publication, as shown in
clause (2). However, FOIL is not able to learn this concept under
schema 4 because because clauses that express different informa-
tion, such as clause (4), get a better score.

As shown in the previous example, under schema 4 FOIL usually
learns clauses that state that the student has been TA for a course of-
fered by his/her advisor, which is not always the case. This makes
FOIL have a low accuracy, precision and recall under schema 4.
However, under the original schema and schema 2, FOIL gets simi-
lar scores. This shows that if small changes are made to the schema,
and these changes don’t affect how the clauses are learned (such as
requiring chains), FOIL is not affected by the design. However
if bigger changes are made to the representation, such as schema
4, FOIL performs differently, thus it is not representation indepen-
dent.

When emulating Progol, Aleph also learns different clauses over

different schemas. Consider the following clauses learned under
the original schema:
(1) advisedBy(A, B) +
publication(C, B), publication(C, A).
(2) advisedBy(A, B) +
inPhase(A, post_quals), publication(C, B).
(3) advisedBy(A, B) +

inPhase(A, post_generals), taship(C, A, D), publication(E, B).
Under the same training data, Aleph learns the following clauses
over schema 4:

4) advisedBy(A, B) +

professorInfo(B, faculty,C, D), studentInfo(A, E, F,G, D).
(5) advisedBy(A, B) +

course(C, B, D, E,level_500), course(F, B, G, H, level_400),

studentInfo(A, post_quals, I, J, K).

Sometimes Progol is able to learn clauses that express the same
information under different schemas. For example, clauses (1) and
(4) express the concept of the student and the advisor having a com-
mon publication. However this is not always the case. Taking a
look at the clauses learned under the original schema and schema
2, more general clauses are learned, usually expressing information
about professors or students, but not always a relationship between
them. This results in a high recall, but low precision. On the other
hand, clauses learned under schema 4 are able to capture more in-
formation with less relations, as they have a bigger arity. Therefore,
these clauses are more precise, but less general, resulting in a lower
recall. Because the learned clauses are not equivalent under dif-
ferent schemas, according to our definition, we can conclude that
Progol is not representation independent either.

With the parameters mentioned above, most of the running time
is spent in performing search over the search space. Because FOIL
is greedy, it runs very quickly over all schemas, even for a large
number of nodes. On the other hand, Progol’s running time is de-
pendent on the size of the search space. The difference of running
time over different schemas is mostly seen with a large number of
nodes. Because we set schema 4 to have only one layer of variables,
it is the fastest, as it spends less time creating the bottom clause and
traversing the search space. Schema 2 takes more time because it
requires two layers of variables and its relations have higher arity,
which results in bigger bottom clauses.

5.2 Query-based systems

5.2.1 Experimental settings

In this section, we evaluate the impact of design on query-based
systems. We employed the LogAn-H system [2], which is an im-
plementation of the A2 algorithm [10]. Specifically, we employed
the interactive algorithm with automatic user mode. In this mode,
the system is told the expression to be learned, and the algorithm’s
queries are answered automatically using this expression.

We generated random expressions over schema 4 in Table 1, each
containing multiple definite Horn clauses. The only parameter for
generating each clause is the number of variables in the clause. All
generated expressions are Horn definitions. To generate the head of
each clause, we created a new relation of random arity, where the
minimum arity is 1 and the maximum arity is the maximum arity
of the relations in schema 4. The body of each clause can be of any
length as long as the number of variables in the clause is equal to the
specified parameter and all variables appearing in the head relation
also appear in any relation in the body. The body of the clause is
composed of randomly chosen relations, where each relation can
be the head relation (allowing for recursive clauses) or any relation
in the input schema. Head and body relations are populated with



Accuracy Precision Recall Running time
Nodes Original | Schema Schema Original | Schema Schema Original | Schema Schema Original | Schema Schema
Schema 2 4 Schema 2 4 Schema 2 4 Schema 2 4
1000 0.73 0.76 0.77 0.62 0.62 0.71 0.72 0.81 0.60 5.42s 5.00s 3.10s
3000 0.74 0.77 0.77 0.62 0.62 0.71 0.72 0.81 0.60 12.83s 11.66s 9.09s
5000 0.73 0.77 0.77 0.62 0.62 0.71 0.72 0.81 0.60 20.19s 19.29s 16.55s
100000 0.76 0.75 0.78 0.62 0.60 0.73 0.76 0.76 0.60 3.76m 7.16m 2.41m
Table 5: Results for the original schema, schema 2 and schema 4, varying the number of nodes in the search space.
Accuracy Precision Recall Running time
Beam size Original | Schema Schema Original | Schema Schema Original | Schema Schema Original | Schema Schema
Schema 2 4 Schema 2 4 Schema 2 4 Schema 2 4
1 0.72 0.72 0.64 0.62 0.64 0.48 0.70 0.71 0.43 2.34s 2.71s 0.75s
3 0.72 0.75 0.76 0.62 0.61 0.70 0.70 0.81 0.62 2.64s 2.12s 0.72s
infinite 0.76 0.75 0.78 0.62 0.60 0.73 0.76 0.76 0.60 3.76m 7.16m 2.41m

Table 6: Results for the original schema, schema 2 and schema 4, varying the beam size.

140

120

==Qriginal Schema
==Schema 2
Schema 4

100

80

MQs

60

40

20

4 5 6 7 8
Variables

Figure 1: Average number of membership queries required by the A2 al-
gorithm.

variables, where each variable is randomly chosen to be a new (until
reaching the input number of variables) or already used variable.
Clauses cannot contain function or constant symbols.

After generating each random expression over schema 4, we
translate these expressions to the original schema and schema 2
by simply doing vertical decomposition to each of the clauses in
an expression. Then, we minimized all expressions using the Ho-
momorphism theorem and the Chase algorithm with the functional
and inclusion dependency constraints [1].

We varied the number of clauses in an expression to be between
1 and 5, each containing between 4 and 8 variables. We generated
50 random expressions for each setting, getting a total of 250 ex-
pressions for each number of variables. The A2 algorithm takes as
input the target expression and the signature. The signature consists
of the names of all relations in the input schema and the head rela-
tion, as well as the arity of each relation. We ran the LogAn-H sys-
tem with the original expression over schema 4 and the translated
expressions over the original schema and schema 2, and recorded
the number of queries required to learn each expression. In these
experiments, we report the query complexity — number of equiv-
alence queries (EQs) and membership queries (MQs) — of the A2
algorithm.

5.2.2 Results

The average number of EQs required by the A2 algorithm to
learn Horn expressions over all schemas is constant over different
numbers of variables. For all schemas, the number of EQs is almost
the same, with a maximum difference of 2 queries. On the other

hand, there are considerable differences in the number of MQs.
Figure 1 shows the number of MQs required by the A2 algorithm
over the three schemas. The difference in MQs between schemas
comes from the step that performs the minimization of objects in
the A2 algorithm. Given a negative example, the algorithm iterates
over domain elements. In each iteration, it drops an element and all
relations in which the element appears, and asks a MQ to check if
the interpretation is negative. If it is, then the algorithm continues
with the smaller example. In the original schema, relations have
smaller arities. This allows dropping objects and relations with-
out emptying the interpretation. This is not the case for schema 4,
where dropping a relation may empty the interpretation, as relations
have bigger arity. The algorithm does not ask MQs for an empty in-
terpretation. Schema 2 requires more MQs than schema 4, but less
than the original schema, as it is in the middle ground in terms of
composition. Therefore, the algorithm asks more MQs when using
the most decomposed schema, which is the original schema.

These results differ from the worst-case analysis shown in Sec-
tion 4. Target expressions were generated for schema 4 and then
translated to the original schema and schema 2. Therefore, these
expressions are equivalent, contain the same number of variables,
and only differ in the maximum arity of relations. According to
the worst-case analysis, A2 should require more queries to learn
the target expressions under schema 4. This is not the case in the
average-case, as seen in the empirical results. This issue requires
further investigation.

6. CONCLUSION

We introduced the concept of schema independence, and argued
that relational learning algorithm should be schema independent.
We explored the effects of different representations of data on query-
based and sample-based learning algorithms. Our results showed
that different representations considerably affect the effectiveness
and efficiency of sample-based algorithms, as well as the query
complexity of query-based algorithms. Worst-case analysis dif-
fered from average-case results for query-based analysis. Hence,
understanding this difference would be helpful for studying the ef-
fect of different representations on these and other algorithms. It
would be interesting to evaluate the impact of different representa-
tions on sample-based, bottom-up algorithms, such as Golem [16],
ProGolem [17] and the batch algorithm of LogAn-H [2]. Finally,
developing a schema independent algorithm is the ultimate goal of
this research.
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